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Abstract

Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of rectangular cantilever wings with a cubic

nonlinearity are investigated. Aeroelastic equations of a rectangular cantilever wing with two degrees of freedom in an

incompressible potential flow are presented in the time domain. The harmonic balance method is modified to calculate

the LCO frequency and amplitude for rectangular wings. In order to verify the derived formulation, flutter boundaries

are obtained via a linear analysis of the derived system of equations for five different cases and compared with

experimental data. Satisfactory results are gained through this comparison. The problem of finding the LCO frequency

and amplitude is solved via applying the two methods discussed for two different cases with hardening cubic

nonlinearities. The results from first-, third- and fifth-order harmonic balance methods are compared with the results of

an exact numerical solution. A close agreement is obtained between these harmonic balance methods and the exact

numerical solution of the governing aeroelastic equations. Finally, the nonlinear aeroelastic analysis of a rectangular

cantilever wing with a softening nonlinearity is studied.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Cubic nonlinearity; Harmonic balance method; Limit cycle oscillations; Numerical solution; Rectangular cantilever wing
1. Introduction

Aeroelasticity is defined as the interaction of aerodynamics, elasticity and dynamics. Classical theories of

aeroelasticity assume that the aerodynamic and structural forces are linear. For many decades, the classical approach

has been successful in providing approximate estimates of aircraft response to gusts, turbulence and external excitation.

The flutter boundaries are often quite accurately predicted when compared to flight test results. On the other hand,

these classical methods are unable to capture phenomena arising from structural and aerodynamic nonlinearities.

Aerodynamic nonlinearities are often encountered at transonic speeds or high angles of attack where flow separation

occurs. Structural nonlinearities are classified as being either distributed or concentrated. In general, distributed

structural nonlinearities are governed by elastodynamic deformations that affect the whole structure. On the other

hand, concentrated nonlinearities act locally and commonly arise from worn hinges of the control surfaces, loose

control linkages, or are related to material behavior. A comprehensive review on this subject has been presented by Lee
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

ah nondimensional distance from wing section

mid-chord to elastic axis

b wing section semi-chord

c chord

Ch;Ca damping coefficients in plunge and pitch

D damping energy

dCL wing elemental aerodynamic lift coefficient

dCM wing elemental pitching moment coefficient

dof degree of freedom

EI bending stiffness

f hðZÞ first plunge mode shape function

f aðZÞ first pitch mode shape function

h plunge displacement

h1; a1 time-dependent part of plunge and pitch

motions

HB harmonic balance method

IC:G mass moment of inertia about center of

gravity

Ia mass moment of inertia about elastic axis

Gðx1Þ structural nonlinearity in plunge

GJ torsional stiffness

K1;K2 constants of mode shape functions

l span length of wing

L wing aerodynamic lift force

LCO limit cycle oscillations

m wing mass per unit length

Mða1Þ structural nonlinearity in pitch

ME:A wing pitching moment about elastic axis

Qh;Qa generalized forces corresponding to plunge

and pitch

ra radius of gyration about elastic axis

T kinetic energy

t time

U free-stream velocity

Un nondimensional velocity

Un
L nondimensional linear flutter speed

V potential energy

dW virtual work

xa nondimensional distance from elastic axis to

center of mass

y coordinate along wing span

a pitch angle of wing section

ba; ba3 constants in nonlinear term Mða1Þ
bx; bx3 constants in nonlinear term Gðx1Þ
b1; b2 constants in mode shape functions

�1; �2 constants in Wagner’s function

zx; za viscous damping ratios in plunge and pitch

Z dimensionless coordinate along the wing span

m wing/air mass ratio

x nondimensional plunge displacement

x1 nondimensional time-dependent part of

plunge motion

r air density

t nondimensional time

fðtÞ Wagner’s function

c1;c2 constants in Wagner’s function

o frequency of limit cycle oscillations

oh;oa natural frequencies in plunge and pitch

ō frequency ratio
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et al. (1999a). These systems exhibit nonlinear dynamic response characteristics such as limit cycle oscillations (LCO).

LCO can only occur in nonlinear systems; consequently, it is not possible to predict LCO using a purely linear analysis.

Cubic nonlinearity as a concentrated structural nonlinearity for a two-dof (degree-of-freedom) airfoil was first

studied by Woolsten et al. (1957) and Shen (1959). For an airfoil containing a hardening cubic nonlinearity, they

showed that, as the flow velocity increases beyond the linear flutter speed, the motion oscillates with limited amplitude.

Lee and LeBlanc (1986), Lee et al. (1999b) analyzed a 2-dof airfoil motion with cubic nonlinearity in pitch using a time

marching simulation. Price et al. (1995) studied a cubic nonlinearity in the pitch direction using the describing function

method. They could predict the LCO amplitude in the pitch direction with this semi-analytical method. Liu et al. (2000)

applied center manifold theory to obtain the LCO frequency of airfoils with cubic nonlinearity. Most recently, Lee et al.

(2005) have used harmonic balance (HB) method in order to predict LCO frequency and amplitude of motion.

O’Neil and Strganac (1998) investigated the aeroelastic response of a rigid wing supported by a cubic nonlinear

spring. They studied the dynamic response of a two-dof wing section via the quasi-steady assumption in the frequency

domain. In another research, Marzocca et al. (2002) studied the aeroelastic response and flutter of a swept wing

containing a cubic nonlinearity in an incompressible flow, but the prediction of LCO amplitude and frequency was not

within the scope of that paper. Rather they concentrated on the flutter instability boundaries.

In the present work, the governing aeroelastic equations of a two-dof rectangular cantilever wing are derived through

applying the strip theory and unsteady aerodynamics, and they are studied in the time domain. In order to apply strip

theory, mode shapes of the cantilever beam are used. A linear analysis is carried out for verification. HB methods of

different orders are applied in order to predict LCO amplitude and frequency of a two-dof uniform wing with hardening

cubic nonlinearity and the results are compared with the exact numerical solution of the derived equations. Also,
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nonlinear aeroelastic analysis of a wing containing a softening cubic nonlinearity is studied using the exact numerical

solution.
2. Governing aeroelastic equations

The Lagrange equations can be used to obtain the governing aeroelastic equations of a rectangular wing in an

incompressible flow. Consider a two-dof wing oscillating in pitch and plunge. The sketch of a wing section is shown in

Fig. 1. As shown, the plunge deflection is denoted by h, positive downward direction, and the pitch angle a, positive
nose up, respectively; b is the semi-chord length, and xa and ah are dimensionless distance of the elastic axis from center

of mass and midchord, respectively. The notations used in the analysis of the two-dof wing are shown in Fig. 2. In

addition to the illustrated notations, the length of span is denoted by l, and y is the horizontal coordinate in the span

direction.

The Lagrange equations for a two-dof rectangular wing oscillating in pitch and plunge can be written as follows:

d

dt

qT

q _h1

� �
�

qT

qh1
þ

qV

qh1
þ

qD

q _h1
¼ Qh;

d

dt

qT

q_a1

� �
�

qT

qa1
þ

qV

qa1
þ

qD

q_a1
¼ Qa, (1)
c

b

b

Mean position

ahb

xαb

h

α

Mid-chord

Elastic axis

Centre of mass

Fig. 1. Schematic figure of the wing section [from Lee et al. (1999a)].
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Fig. 2. Sketch of a rectangular cantilever wing.
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where h1 and a1 are the time-dependent parts of the plunge and pitch motions. The kinetic, potential and damping

energies, denoted by T , V and D, respectively, may be expressed as follows for the two-dof wing:

T ¼
1

2

Z l

0

½mð _hþ bxa _aÞ2 þ IC:G _a2� dy; V ¼
1

2

Z l

0

EI
q2h

qy2

� �2

þ GJ
qa
qy

� �2
" #

dy, (2,3)

D ¼
1

2

Z l

0

½Ch
_h
2
þ Ca _a2� dy, (4)

where m; IC:G ;EI ;GJ;Ch and Ca are wing mass per unit length, wing mass moment of inertia per unit length about wing

center of gravity, bending stiffness, torsional stiffness, and the bending and torsional damping coefficients, respectively.

Assuming the rectangular wing as a uniform cantilever beam, these mode shapes can be used for plunge and pitch dof

as follows (Marzocca et al., 2002):

FhðZÞ ¼ K1
sinh b1 þ sin b1
cosh b1 þ cos b1

� �
ðcosðb1ZÞ � coshðb1ZÞÞ þ sinhðb1ZÞ � sinðb1ZÞ

� �
, (5)

FaðZÞ ¼ K2 sinðb2ZÞ, (6)

where b1 ¼ 0:5969p for the first bending mode, b2 ¼ 0:5p for the first torsional mode , Z is a dimensionless coordinate

along the wing span ðZ ¼ y=lÞ, and K1 and K2 are constants. Combining the time-dependent parts of the motion and

assumed mode shapes, it can be deduced that

h ¼ FhðZÞh1ðtÞ; a ¼ FaðZÞa1ðtÞ. (7,8)

Applying assumed mode shapes by inserting Eqs. (7) and (8) into Eqs. (2), (3) and (4), the following expressions can be

obtained for the kinetic, potential and damping energy of the rectangular cantilever wing:

T ¼
A3

2
ðml _h

2

1Þ þ
A4

2
lmðbxa _a1Þ

2
þ A5ðlmbxa

_h1 _a1Þ þ
A4

2
lIC:G _a21, (9)

V ¼
A1

2

EI

l3
h21

� �
þ

A2

2

GJ

l
a21

� �
, (10)

D ¼ l
A3

2
Ch

_h
2

1 þ l
A4

2
Ca _a21, (11)

where A1; :::;A5 are constants and are given in Appendix A. Inserting Eqs. (9)–(11) in Eq. (1), we can write

A3ðlm €h1Þ þ A5ðlmbxa €a1Þ þ A3lCh
_h1 þ A1

EI

l3
h1

� �
¼ Qh, (12)

A4lmðbxaÞ
2 €a1 þ A5ðlmbxa

€h1Þ þ lA4IC:G €a1 þ lA4Ca _a1 þ A2
GJ

l
a1

� �
¼ Qa. (13)

Defining

x ¼
h

b
; ra ¼

ffiffiffiffiffiffiffiffiffi
Ia

mb2

r
; m ¼

m

prb2
; Un ¼

U

boa
; oh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1EI

A3ml4

s
; oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2GJ

A4Ial2

s
; ō ¼

oh

oa
,

zx ¼
1

2

ffiffiffiffiffiffi
A3

A1

r
l2Chffiffiffiffiffiffiffiffiffiffi
mEI
p ; za ¼

1

2

ffiffiffiffiffiffi
A4

A2

r
Calffiffiffiffiffiffiffiffiffiffiffi
IaGJ
p .

Eqs. (12) and (13) can be written as

A3x
00
1 þ A5ðxaa001Þ þ 2A3zx

ō
Un

x01 þ A3
ō

Un

� �2

x1 ¼
b

mU2l
Qh, (14)

A5
xa

r2a
x001

� �
þ A4a001 þ 2A4

za
Un

a01 þ A4
1

Un

� �2

a1 ¼
b2

IaU2l
Qa, (15)
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where x is a dimensionless plunge displacement, oh and oa are natural frequencies of uncoupled plunging and pitching

modes, zx and za are the viscous damping ratios in plunge and pitch, and the prime sign denotes differentiation with

respect to the nondimensional time t defined as t ¼ Ut=b. Also Un, ō and ra are nondimensional speed, frequency ratio

and radius of gyration about the elastic axis, respectively.

By extending Eqs. (14) and (15) to nonlinear form, concentrated structural nonlinearities can be analyzed. In

this case, these equations can be written as a system of nonlinear ordinary differential equations (ODEs) as

follows:

A3x001 þ A5ðxaa001Þ þ 2A3zx
ō

Un
x01 þ A3

ō
Un

� �2

Gðx1Þ ¼
b

mU2l
Qh, (16)

A5
xa

r2a
x001

� �
þ A4a001 þ 2A4

za
Un

a01 þ A4
1

Un

� �2

Mða1Þ ¼
b2

IaU2l
Qa, (17)

where Gðx1Þ and Mða1Þ are nonlinear stiffness terms which are defined for a cubic nonlinearity as

Gðx1Þ ¼ bxx1 þ bx3x
3
1; Mða1Þ ¼ baa1 þ ba3a

3
1. (18,19)

Terms Qh and Qa in Eqs. (16) and (17) are the generalized forces corresponding to the generalized coordinates h1 and

a1, respectively. These terms are obtained using the virtual work law and they are related to the lift and pitching

moment coefficients about the elastic axis. Ignoring the thickness of the airfoil, the following expressions for the lift and

pitching moment of an airfoil in an incompressible flow were given by Fung (1969):

dCLðtÞ ¼ pðx00 � aha00 þ a0Þ þ 2p að0Þ þ x0ð0Þ þ
1

2
� ah

� �
a0ð0Þ

� �
fðtÞ

þ 2p
Z t

0

fðt� sÞ a0ðsÞ þ x00ðsÞ þ
1

2
� ah

� �
a00ðsÞ

� �
ds,

dCM ðtÞ ¼ p
1

2
þ ah

� �
að0Þ þ x0ð0Þ þ

1

2
� ah

� �
a0ð0Þ

� �
fðtÞ

þ p
1

2
þ ah

� �Z t

0

fðt� sÞ a0ðsÞ þ x00ðsÞ þ
1

2
� ah

� �
a00ðsÞ

� �
ds

þ
p
2

ahðx
00
� aha00Þ �

1

2
� ah

� �
p
2
a0 �

p
16

a00, ð20Þ

where Wagner’s function fðtÞ is given by

fðtÞ ¼ 1� c1e
��1t � c2e

��2t, (21)

and the constants c1 ¼ 0:165; c2 ¼ 0:335; �1 ¼ 0:0455 and �2 ¼ 0:3 are obtained from Lee et al. (1999a).

In order to apply these expressions for the wing, strip theory is used. In this approximation, the known results

for two-dimensional flow (infinite span airfoil) are employed in order to calculate the aerodynamic forces on a

lifting surface of finite span (Dowell et al., 2004). Eq. (20) gives the lift and pitching moment coefficients of an

airfoil which can be interpreted as an element of the wing. In this theory, these expressions are integrated to obtain the

overall lift and pitching moment about the elastic axis for the wing. So, according to strip theory, the virtual work

dWdone on the wing by these aerodynamic forces as the wing moves through the virtual displacements dh and da, can
be written as

dW ¼ � rU2bl

Z 1

0

dCLf hðZÞ dZ
� �

dh1 þ 2rU2b2l

Z 1

0

dCMf aðZÞ dZ
� �

da1, (22)

and as a result, terms Qh and Qa are derived using following formulas:

Qh ¼ �rU2bl

Z 1

0

dCLf hðZÞ dZ; Qa ¼ 2rU2b2l

Z 1

0

dCMf aðZÞ dZ, (23,24)

in which dCL and dCM are the lift and pitching moment coefficients of an element of the wing given in Eq. (20). Final

expressions for terms Qh and Qa are obtained using the assumed structural modes in Eqs. (23) and (24). These modes
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are given in Eqs. (5) and (6). Thus, by inserting Eqs. (5)–(8) in Eqs. (23) and (24), the generalized forces can be expressed

as follows:

Qh ¼ � rU2bl pðA3x
00
1 � A5aha001 þ A5a01Þ þ 2p A5a1ð0Þ þ A3x

0
1ð0Þ þ

1

2
� ah

� �
A5a01ð0Þ

� �
fðtÞ

�

þ2p
Z t

0

fðt� sÞ A5a01ðsÞ þ A3x
00
1ðsÞ þ

1

2
� ah

� �
A5a001ðsÞ

� �
ds
�
,

Qa ¼ 2rU2b2l p
1

2
þ ah

� ��
A4a1ð0Þ þ A5x

0
1ð0Þ þ

1

2
� ah

� �
A4a01ð0Þ

� �
fðtÞ

þ p
1

2
þ ah

� �Z t

0

fðt� sÞ A4a01ðsÞ þ A5x
00
1ðsÞ þ

1

2
� ah

� �
A4a001ðsÞ

� �
ds

þ
p
2

ahðA5x
00
1 � A4aha001Þ �

1

2
� ah

� �
p
2

A4a01 �
p
16

A4a001

�
. ð25Þ

By utilizing Eq. (25) in Eqs. (16) and (17), the governing aeroelastic equations for the rectangular cantilever wing can

be obtained. But, due to the existence of the integro-differential terms in Eq. (25), it is very difficult to integrate them

numerically. By using four new variables, first introduced by Lee et al. (1997),

w1 ¼

Z t

0

e��1ðt�sÞa1ðsÞ ds; w2 ¼

Z t

0

e��2ðt�sÞa1ðsÞ ds,

w3 ¼

Z t

0

e��1ðt�sÞx1ðsÞ ds; w4 ¼

Z t

0

e��2ðt�sÞx1ðsÞ ds, (26)

in Eq. (25) and eventually in Eqs. (16) and (17), the governing aeroelastic equations for a rectangular cantilever wing

can be written as follows:

c0x001 þ c1a001 þ c2x01 þ c3a01 þ c4x1 þ c5a1 þ c6w1 þ c7w2 þ c8w3 þ c9w4 þ A3
ō

Un

� �2

Gðx1Þ ¼ f ðtÞ, (27)

d0x
00
1 þ d1a001 þ d2a01 þ d3a1 þ d4x

0
1 þ d5x1 þ d6w1 þ d7w2 þ d8w3 þ d9w4 þ A4

1

Un

� �2

Mða1Þ ¼ gðtÞ. (28)

The coefficients c0; c1; ::::; c9, d0; d1; :::; d9 and expressions f ðtÞ and gðtÞ are given in Appendix B.
3. Numerical solution

The governing aeroelastic equations in the time domain, Eqs. (27) and (28), can easily be rewritten as a set of first-

order ODEs. By a suitable transformation, the resulting set of eight ODEs is given as follows:

dX

dt
¼ F ðx; tÞ, (29)

where

X ¼ ½x1 x2 x3 x4 x5 x6 x7 x8�
T ¼ ½a1 a01 x1 x01 w1 w2 w3 w4�

T. (30)

The standard fourth-order Runge–Kutta method can be used to integrate the system of Eq. (29) for given initial

conditions. It can be deduced easily from Eq. (26) that

t ¼ 0) w1 ¼ w2 ¼ w3 ¼ w4 ¼ 0. (31)

So, the initial conditions of the system can be expressed as

X ð0Þ ¼ ½x1ð0Þ x2ð0Þ x3ð0Þ x4ð0Þ x5ð0Þ x6ð0Þ x7ð0Þ x8ð0Þ�
T

¼ ½a1ð0Þ a01ð0Þ x1ð0Þ x01ð0Þ 0 0 0 0�T, ð32Þ

where a1ð0Þ; a01ð0Þ; x1ð0Þ and x01ð0Þ are the initial values of the time-dependent part of pitch displacement, pitch velocity,

plunge displacement and plunge velocity, respectively. The accuracy of the scheme at each time step is OðDt5Þ.
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Finally, for a selected section of the wing which is defined by Z 2 ½0; 1� (from root to tip of the wing) at a specific time,

pitch and plunge displacements can be obtained by combining assumed mode shapes and time-dependent parts as

follows:

aðt; ZÞ ¼ a1ðtÞf aðZÞ; xðt; ZÞ ¼ x1ðtÞf hðZÞ. (33)
4. Harmonic balance method

The HB method is an efficient method for the prediction of the frequency and amplitude of LCO which occurs at

speeds above the linear flutter speed for wings containing a hardening cubic nonlinearity. This method gives the

harmonic solution of a system of nonlinear differential equations, the amplitude and frequency of which is constant and

similar to LCO conditions. In order to apply this method, plunge and pitch motions should be assumed as a

trigonometric series, such as Fourier series. So, the time-dependent part of plunge and pitch motions can be

approximated as follows:

a1ðtÞ ¼ a1 sinðotÞ þ
X

i¼3;5;7;9;:::

ai sinðiotÞ þ bi cosðiotÞ; (34)

x1ðtÞ ¼
X

j¼1;3;5;9;:::::

ej sinðjotÞ þ f j cosðjotÞ. (35)

Similar to the feature assumed for LCO, coefficients ai; bi; ej ; f j and also the LCO frequency o are constant with

respect to dimensionless time t. Substituting Eqs. (34) and (35) in Eqs. (27) and (28) and ignoring the terms which are

dependent on initial conditions, a system of trigonometric equations is obtained. Collecting the coefficients of sinðiotÞ
and cosðiotÞ ði ¼ 1; 3; 5; . . .Þ, we obtain a system of algebraic equations with o; a1; ai; bi ; ej and f j ði ¼ 3; 5; 7; . . .; j ¼

3; 5; 7; . . .Þ as variables. The maximum values of the indices i and j are equal. The order of the harmonic balance method

is also equal to this maximum value.

For instance, for the first-order HB method (HB1) (i ¼ j ¼ 1), the nonlinear terms a31ðtÞ and x31ðtÞ can be expressed as

Eqs. (36) and (37) and higher harmonics in 3ot and above are ignored:

a31ðtÞ ¼
3
4

a31 sinðotÞ, (36)

x31ðtÞ ¼
3
4

e31 sinðotÞ þ
3
4

e21f 1 cosðotÞ þ
3
4

e1f 2
1 sinðotÞ þ

3
4

f 3
1 cosðotÞ. (37)
Table 1

Case studies of the linear analysis: physical and geometrical characteristics

Case NACA wing section ohs (rad/s) oa (rad/s) b (m) l (m)

30A 16-010 23:8p 166p 0.0509 0.6299

30B 16-010 24p 176p 0.0509 0.6299

40C 16-010 18p 116:4p 0.0509 0.6299

91-2 16-010 11p 86p 0.1015 1.2192

91-3 16-010 10p 80p 0.1015 1.2192

Table 2

Case studies of the linear analysis: nondimensional characteristics

Case NACA wing section xa ah r2a m

30A 16-010 0.220 �0.300 0.311 36.8

30B 16-010 0.120 �0.200 0.277 37.8

40C 16-010 0.150 �0.230 0.287 8.74

91-2 16-010 �0.056 �0.124 0.179 41.7

91-3 16-010 0.012 �0.032 0.160 44.3
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By utilizing Eqs. (34) and (35) for i ¼ j ¼ 1 and also Eqs. (36) and (37), the resulting set of nonlinear algebraic

equations for the first-order HB method can be obtained as follows:

� c0e1o2 � c1a1o2 � c2f 1oþ c4e1 þ c5a1 þ
c6a1�1
�21 þ o2

þ
c7a1�2
�22 þ o2

þ
c8e1�1
�21 þ o2

þ
c8f 1o
�21 þ o2

þ
c9e1�2
�22 þ o2

þ
c9f 1o
�22 þ o2

þ A3
ō

Un

� �2

bxe1 þ
3

4
bx3 ðe

3
1 þ e1f 2

1Þ

� �
¼ 0, ð38Þ

� c0f 1o
2 þ c2e1oþ c3a1oþ c4f 1 �

c6a1o
�21 þ o2

�
c7a1o
�22 þ o2

�
c8e1o
�21 þ o2

þ
c8f 1�1
�21 þ o2

�
c9e1o
�22 þ o2

þ
c9f 1�2
�22 þ o2

þ A3
ō

Un

� �2

bxf 1 þ
3

4
bx3 ðf

3
1 þ f 1e21Þ

� �
¼ 0, ð39Þ

� d0e1o2 � d1a1o2 þ d3a1 � d4f 1oþ d5e1 þ
d6a1�1
�21 þ o2

þ
d7a1�2
�22 þ o2

þ
d8e1�1
�21 þ o2

þ
d8f 1o
�21 þ o2

þ
d9e1�2
�22 þ o2

þ
d9f 1o
�22 þ o2

þ A4
1

Un

� �2

baa1 þ
3

4
ba3a

3
1

� �
¼ 0, ð40Þ

� d0f 1o
2 þ d2a1oþ d4e1oþ d5f 1 �

d6a1o
�21 þ o2

�
d7a1o
�22 þ o2

�
d8e1o
�21 þ o2

þ
d8f 1�1
�21 þ o2

�
d9e1o
�22 þ o2

þ
d9f 1�2
�22 þ o2

¼ 0. ð41Þ

As can be seen, the number of equations for HB1 is 4. For every increment in the order of this method, four new

unknown variables and therefore four other nonlinear algebraic equations will be added to the previous number.

Therefore, by increasing the order of the HB method, our resulting system of algebraic nonlinear equations will be more

complex. However, more accurate results can be obtained by increasing the order of this method. For the sake of

brevity, the resulting sets of nonlinear HB equations for higher orders are not given in this paper, but the results

obtained up to fifth order are discussed.

Solving the resulting system of equations such as Eqs. (38)–(41) for HB1, the LCO frequency and amplitude can

easily be obtained by using the Newton method for a set of nonlinear algebraic equations. Having found the time-

dependent part of pitch and plunge motions, the LCO pitch and plunge amplitude will be obtained through Eq. (33).
Table 3

Calculated and experimental results for flutter speed

Case Experimental flutter speed (m/s) Calculated flutter speed (m/s) Error (percentage)

30A 103.713 94.438 �8.94

30B 102.372 95.731 �6.49

40C 33.662 33.546 �0.34

91-2 92.984 86.406 �7.07

91-3 71.079 70.209 �1.22

Table 4

Case studies of the nonlinear analysis

Case ba b3a bx b3x Un
L

1 1 3 1 0 6.52269

2 1 5 1 1 6.52269

3 1 �3 1 0 6.52269



ARTICLE IN PRESS
B. Ghadiri, M. Razi / Journal of Fluids and Structures 23 (2007) 665–680 673
5. Linear analysis

Linear aeroelastic analysis of the rectangular cantilever wing was carried out in order to verify the derived

formulations. For this reason, experimental data for the flutter speed of the uniform cantilever wing of Barmby et al.

(1950) are used. The physical characteristics of the tested wings and their nondimensional parameters are presented in

Tables 1 and 2, respectively. In order to find the flutter boundaries of these case studies, linear analysis was carried out

via inserting x1 and a1 instead of the nonlinear terms Gðx1Þ and Mða1Þ in Eqs. (27) and (28), respectively. The standard

fourth-order Runge–Kutta method was applied to obtain exact numerical solutions for the resulting set of first-order

differential equations. As a result, pitch and plunge displacements of the wing versus nondimensional time for the

desired section of the wing which is defined by Z can be plotted.

The study of dynamical response of the wing at different velocities shows whether it decays to zero or diverges, and

the linear flutter speed is calculated for each case. Experimental and calculated flutter speeds for five different cases are

given in Table 3. It can be seen that this formulation provides good agreement with the experimental data, and the error

of our proposed method compared to the experimental data in all five cases is below 10%.

In the strip theory approximation, the chordwise pressure distribution at any spanwise station is assumed to depend

only on the downwash at that station given by the two-dimensional aerodynamic theory and to be independent of the

downwash at any other spanwise station (Dowell et al., 2004). Actually, this assumption causes an error in our
Fig. 3. Wing tip variation of amplitude with number of cycles for Case 1 and Un ¼ 1:01Un
L: (a) amplitude of pitch motion; (b)

amplitude of plunge motion; — —, a1ð0Þ ¼ 1�; , a1ð0Þ ¼ 3�; ; a1ð0Þ ¼ 5�; – – – –; a1ð0Þ ¼ 10�.

Fig. 4. Wing tip variation of amplitude with number of cycles for Case 2 and Un ¼ 1:01Un
L: (a) amplitude of pitch motion; (b)

amplitude of plunge motion; — —, a1ð0Þ ¼ 1�; , a1ð0Þ ¼ 3�; ; a1ð0Þ ¼ 5�; – – – –; a1ð0Þ ¼ 10�.
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calculations and it is the main reason of the difference between experimental and calculated data for the flutter speed.

However, by our comparison, it is shown that this error can be ignored. The assumption of two-dimensional flow and

also the use of only the first mode shape of a cantilever beam can be other sources of error.
6. Nonlinear analysis

Nonlinear aeroelastic analysis of rectangular cantilever wings containing softening and hardening cubic nonlinearities

was undertaken for three different cases given in Table 4. By considering the nonlinearities, it is possible to investigate

the dynamical response of the aeroelastic systems beyond the linear flutter boundary. Nonlinear aeroelastic analysis not

only describes phenomena such as LCO, but also in the case of softening nonlinearity, it can predict the nonlinear

flutter boundary which may be below the linear one due to the effect of initial conditions.

The problem of LCO of a rectangular cantilever wing with a hardening cubic nonlinearity was investigated via the

exact numerical solution of the system of Eqs. (27) and (28) and the HB method. Two cases were considered, with the

different hardening cubic restoring forces. The nonlinear terms Gðx1Þ and Mða1Þ for Cases 1 and 2 are given in Table 4.

Also, the following dimensionless numerical values are used for the wings geometry and characteristics:

ah ¼ �0:5; m ¼ 100:0; fx ¼ fa ¼ 0; xa ¼ 0:25; ra ¼ 0:5; ō ¼ 0:2.

In the first case, the wing containing a hardening cubic nonlinearity only in the pitch dof was considered, but in the

second case the dynamical response of the wing with this nonlinearity in both dofs was investigated. The

nondimensional linear flutter speed of Un
L ¼ 6:52269 is obtained by using the standard fourth-order Runge–Kutta

method, which was already discussed.

LCO is the phenomenon which occurs at speeds higher than the linear flutter speed for airfoils containing a hardening

cubic nonlinearity. Due to the similarity of the aeroelastic governing equations of airfoils and rectangular cantilever
Fig. 5. Wing tip dynamical response for Case 1: (a) frequency; (b) amplitude of pitch motion; (c) amplitude of plunge motion; — —,

numerical result; , HB1; , HB3.
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Fig. 6. Wing tip dynamical response for Case 2: (a) frequency; (b) amplitude of pitch motion; (c) amplitude of plunge motion; —,

numerical result; , HB1; , HB3.

Table 5

LCO pitch amplitude (deg) at semi-span of the wing (Z ¼ 0:5 ) for Case 1; comparison between the HB methods and exact numerical

solution

Un

Un
L

First-order harmonic

balance method (HB1)

Third-order harmonic

balance method (HB3)

Fifth-order harmonic

balance method (HB5)

Fourth-order

Runge–Kutta method

1.005 2.522232 2.524287 2.524297 2.524312

1.010 3.571113 3.576886 3.576931 3.576923

1.015 4.378790 4.389325 4.389444 4.389436

1.020 5.062076 5.078188 5.078428 5.078421

1.025 5.666139 5.688522 5.688939 5.688935

1.030 6.214167 6.243382 6.244035 6.244025

1.035 6.719847 6.756411 6.757369 6.757362

1.040 7.192146 7.236499 7.237828 7.237833

1.045 7.637241 7.689807 7.691580 7.691588

1.050 8.059646 8.120789 8.123081 8.123101

1.055 8.462760 8.532813 8.535709 8.535744

1.060 8.849215 8.928499 8.932076 8.932127

1.065 9.221118 9.309910 9.314252 9.314321

1.070 9.580152 9.678707 9.683908 9.684000

1.075 9.927723 10.036279 10.042418 10.042542

1.080 10.264992 10.383763 10.390935 10.391098

1.085 10.592948 10.722136 10.730430 10.730633
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Table 5 (continued )

Un

Un
L

First-order harmonic

balance method (HB1)

Third-order harmonic

balance method (HB3)

Fifth-order harmonic

balance method (HB5)

Fourth-order

Runge–Kutta method

1.090 10.912440 11.052207 11.061735 11.061981

1.095 11.224168 11.374707 11.385530 11.385846

1.100 11.528789 11.690238 11.702471 11.702847

1.105 11.826828 11.999338 12.013071 12.013524

1.110 12.118785 12.302480 12.317818 12.318352

1.115 12.405079 12.600079 12.617122 12.617752

1.120 12.686111 12.892533 12.911359 12.912097

1.125 12.962215 13.180167 13.200876 13.201724

1.130 13.233695 13.463263 13.485953 13.486929

1.135 13.500811 13.742102 13.766851 13.767986

1.140 13.763876 14.016918 14.043890 14.045143

1.145 14.023059 14.287958 14.317220 14.318621

1.150 14.278636 14.555414 14.587037 14.588624

Table 6

LCO plunge amplitude at semi-span of the wing (Z ¼ 0:5 ) for Case 1; comparison between the HB methods and exact numerical

solution

Un

Un
L

First-order harmonic

balance method (HB1)

Third-order harmonic

balance method (HB3)

Fifth-order harmonic

balance method (HB5)

Fourth-order

Runge–Kutta method

1.005 0.079811 0.079736 0.079736 0.079736

1.010 0.113169 0.112960 0.112960 0.112960

1.015 0.138967 0.138591 0.138591 0.138591

1.020 0.160885 0.160317 0.160316 0.160316

1.025 0.180341 0.179563 0.179562 0.179562

1.030 0.198063 0.197060 0.197058 0.197058

1.035 0.214479 0.213240 0.213238 0.213238

1.040 0.229870 0.228386 0.228383 0.228383

1.045 0.244429 0.242694 0.242690 0.242690

1.050 0.258295 0.256306 0.256300 0.256300

1.055 0.271575 0.269329 0.269321 0.269322

1.060 0.284350 0.281846 0.281837 0.281836

1.065 0.296686 0.293925 0.293913 0.293912

1.070 0.308634 0.305617 0.305603 0.305602

1.075 0.320237 0.316968 0.316951 0.316950

1.080 0.331532 0.328015 0.327995 0.327994

1.085 0.342549 0.338788 0.338765 0.338763

1.090 0.353313 0.349315 0.349288 0.349287

1.095 0.363847 0.359618 0.359587 0.359586

1.100 0.374169 0.369717 0.369683 0.369681

1.105 0.384297 0.379630 0.379592 0.379590

1.110 0.394245 0.389372 0.389331 0.389328

1.115 0.404026 0.398957 0.398912 0.398909

1.120 0.413653 0.408397 0.408348 0.408346

1.125 0.423134 0.417704 0.417650 0.417648

1.130 0.432480 0.426886 0.426829 0.426826

1.135 0.441698 0.435953 0.435893 0.435889

1.140 0.450798 0.444913 0.444849 0.444846

1.145 0.459784 0.453773 0.453707 0.453702

1.150 0.468665 0.462540 0.462470 0.462466
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wings in an incompressible flow, the same behavior is seen for the rectangular cantilever wing by increasing the speed

beyond the linear flutter speed of the wing.

LCO amplitude and frequency are independent of initial conditions. In Figs. 3 and 4, the effects of initial pitch

displacement on the pitch and plunge amplitude of LCO are shown. Setting a01ð0Þ ¼ x1ð0Þ ¼ x01ð0Þ ¼ 0 and varying the

time-dependent part of the initial pitch displacement a1ð0Þ, the diagram of LCO pitch and plunge amplitudes versus the

number of cycles can be plotted. Four different initial conditions in both cases were tested. The results show the

independence of amplitude and frequency of LCO on initial conditions. As two examples, this conclusion is shown for

LCO pitch and plunge amplitude for Cases 1 and 2 given in Table 4, Un ¼ 1:01Un
L and wing tip (Z ¼ 1).

LCO pitch and plunge amplitudes and also LCO frequency were investigated by the use of the semi-analytical

method (HB method) and the exact numerical solution (standard fourth-order Runge–Kutta method) for Cases 1 and 2

given in Table 4. The results are presented in Figs. 5 and 6 for nondimensional speeds from Un ¼ 1:005Un
L to

Un ¼ 1:15Un
L and for the wing tip (Z ¼ 1). In these figures, the results for the first- and third-order HB methods were

compared with numerical results at the wing tip. As can be seen, there is a good agreement between the HB method and

the exact numerical results, and also it is clear that the accuracy of HB method increases by increasing the order of this

method. This deduction is confirmed by the results at mid-span of the wing which are presented in Tables 5 and 6.
Fig. 7. Dynamical response of different section of the rectangular cantilever wing for Case 1: (a) amplitude of pitch motion; (b)

amplitude of plunge motion; – - – -, Z ¼ 0:25; yyy, Z ¼ 0:5; – – – , Z ¼ 0:75; —, Z ¼ 1:0.

Fig. 8. Dynamical response of different section of the rectangular cantilever wing for Case 2: (a) amplitude of pitch motion; (b)

amplitude of plunge motion; – - – -, Z ¼ 0:25; yyy, Z ¼ 0:5; – – – , Z ¼ 0:75; —, Z ¼ 1:0.
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According to these results, the fifth-order HB method provides very good agreement with the numerical results. Also it

should be noted that the accuracy of the HB method is decreased by increasing the Un=Un
L ratio.

According to the system of Eqs. (38)–(41) for the first-order HB method (HB1), it is concluded that the LCO

frequency is the same for all sections of the rectangular cantilever wing and is independent of the dimensionless

parameter Z. In Figs. 7 and 8, the LCO plunge and pitch amplitude for different sections of the wing is plotted versus

the Un=Un
L ratio for Cases 1 and 2 given in Table 4. Since the first plunge and pitch mode shapes of the cantilever beam

are used in this research, the maximum and minimum LCO pitch and plunge amplitudes occur at the tip and root of the

wing, respectively. So, as shown in Figs. 6 and 7, for the same Un=Un
L ratio, the LCO amplitude increases as the

dimensionless parameter Z increases.

For the wings containing softening cubic nonlinearity, LCO does not occur at speeds beyond the linear flutter

boundary. Instead, the flutter phenomenon may occur below the linear flutter boundary as shown in Fig. 10. In Fig. 9

the effect of initial conditions on the nonlinear flutter boundary is shown for Case 3. Because of the nonlinear character

of the system, the nonlinear flutter speed is dependent on initial conditions and decreases as the time-dependent part of

initial pitch displacement a1ð0Þ increases.
Fig. 9. Diagram of nondimensional nonlinear to linear flutter speed ratio versus initial value of the time-dependent part of pitch

motion a1ð0Þ for Case 3.

Fig. 10. Pitch displacement versus nondimensional time , t, at different sections of the wing for Case 3 and a1ð0Þ ¼ 8�: (a)

Un ¼ 0:981Un
L; (b) Un ¼ 0:982Un

L; – - – -, Z ¼ 0:25; yy, Z ¼ 0:5; —, Z ¼ 1:0.
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Similar to the cases with hardening cubic nonlinearity, the nonlinear speed is independent of the dimensionless

parameter Z. In Fig. 10 for Case 3, diagram of pitch displacement versus nondimensional time t at speeds below and

beyond the nonlinear flutter speed for different sections of the wing are shown. As can be seen, the amplitude of motion

increases as Z increases.
7. Conclusions

The governing aeroelastic equations of a two-dof rectangular cantilever wing in an incompressible flow were derived

in the time domain. In order to verify this formulation, experimental flutter speeds were compared with the results

obtained from the derived equations using a time integration method. The results of the presented method are in good

agreement with experimental results.

The nonlinear aeroelastic behavior of the two-dof rectangular cantilever wing with hardening and softening cubic

nonlinearities was studied in the time domain, and the prediction of LCO amplitude and frequency via the HB method

and numerical solution was investigated. The results obtained indicate that:

(i) the amplitude and frequency of LCO are independent of initial conditions;

(ii) the HB method provides accurate predictions for the LCO amplitude and frequency, and the accuracy of the

method increases by increasing of its order, as compared to the exact numerical solution;

(iii) the LCO frequency is equal for all sections of the rectangular cantilever wing from root to tip, but the LCO pitch

and plunge amplitudes increase for increasing Z (dimensionless location of the wing section); the maximum pitch and

plunge deflections occur at the wing tip, while their minimum values occur at the root of the wing;

(iv) in the case of softening cubic nonlinearity, the nonlinear flutter which is dependent on initial conditions and

independent of the nondimensional term Z, can occur below the linear flutter boundary.
Appendix A

The constants A1; :::;A7 are given below:

A1 ¼

Z 1

0

d2f hðZÞ
dZ2

� �2

dZ ¼ 22:94429K2
1; A2 ¼

Z 1

0

df aðZÞ
dZ

� �2

dZ ¼
p2

8
K2

2,

A3 ¼

Z 1

0

ðf hðZÞÞ
2 dZ ¼ 1:85598K2

1; A4 ¼

Z 1

0

ðf aðZÞÞ
2 dZ ¼

K2
2

2
,

A5 ¼

Z 1

0

ðf hðZÞf aðZÞÞ dZ ¼ �0:92348K1K2.
Appendix B

The coefficients of Eqs. (30) and (31) are given as follows:

c0 ¼ A3 þ
A3

m
; c1 ¼ A5xa �

1

m
ahA5,

c2 ¼ 2A3zx
ō

Un
þ

2

m
A3½1� c1 � c2�; c3 ¼

1

m
1þ 2ð1� c1 � c2Þ

1

2
� ah

� �� �
A5,

c4 ¼
2

m
A3½c1�1 þ c2�2�; c5 ¼

2

m
A5 1� c1 � c2 þ ðc1�1 þ c2�2Þ

1

2
� ah

� �� �
,

c6 ¼
2

m
A5 c1�1 � c1�

2
1

1

2
� ah

� �� �
; c7 ¼

2

m
A5 c2�2 � c2�

2
2

1

2
� ah

� �� �
,
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c8 ¼ �
2

m
A3½c1�

2
1�; c9 ¼ �

2

m
A3½c2�

2
2�; d0 ¼ A5

xa

r2a

� �
�

1

mr2a
ahA5,

d1 ¼ A4 þ
1

mr2a
a2h þ

1

8

� �
A4; d2 ¼ 2A4

za
Un
�
ð1� 2ahÞ

2mr2a
½ð1þ 2ahÞð1� c1 � c2Þ � 1�A4,

d3 ¼ �
2

mr2a

1

2
þ ah

� �
A4 1� c1 � c2 þ ðc1�1 þ c2�2Þ

1

2
� ah

� �� �
,

d4 ¼ �
2

mr2a

1

2
þ ah

� �
A5½1� c1 � c2�; d5 ¼ �

2

mr2a

1

2
þ ah

� �
A5½c1�1 þ c2�2�,

d6 ¼ �
2

mr2a

1

2
þ ah

� �
A4 c1�1 � c1�

2
1

1

2
� ah

� �� �
,

d7 ¼ �
2

mr2a

1

2
þ ah

� �
A4 c2�2 � c2�

2
2

1

2
� ah

� �� �
,

d8 ¼
2

mr2a

1

2
þ ah

� �
A5½c1�

2
1�; d9 ¼

2

mr2a

1

2
þ ah

� �
A5½c2�

2
2�.

Also, the functions f ðtÞ and gðtÞ are given below:

f ðtÞ ¼
2

m
A5

1

2
� ah

� �
a1ð0Þ þ A3x1ð0Þ

� �
½c1�1e

��1t þ c2�2e
��2t�

� �
,

gðtÞ ¼ �
ð1þ 2ahÞ

mr2a
A4

1

2
� ah

� �
a1ð0Þ þ A5x1ð0Þ

� �
½c1�1e

��1t þ c2�2e
��2t�

� �
.
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